Highly Regioselective Nucleophilic Substitution of Cyclic Carbonates of *threo*-2,3-Dihydroxy Esters: Synthesis of Optically Pure β-Hydroxy Esters

Suk-Ku Kang,* Dong-Chul Park, Ho-Sik Rho, Seung-Hyun Yoon and Joon-Seob Shin Department of Chemistry, Sung Kyun Kwan University, Natural Science Campus, Suwon 440-746, Korea

The nucleophilic ring opening of the cyclic carbonates of optically active *threo*-2,3-dihydroxy esters **1** afforded the α -substituted β -hydroxy esters **2** with highly regio- and stereo-selectivity under mild conditions. The α -sulfanyl or α -iodo β -hydroxy esters **2** thus obtained were transformed to the β -hydroxy esters **3**, which are useful chiral synthons for natural product synthesis.

Optically active α -substituted β -hydroxy esters are useful intermediates in the synthesis of natural products. They are usually prepared by regioselective ring opening of epoxides,¹ cyclic sulfates² and cyclic sulfinates.³ Now, we wish to report that the cyclic carbonates of optically active *threo*-2,3-dihydroxy esters are good substrates for nucleophilic substitution under mild conditions (Scheme 1). Optically active *threo*-

Scheme 1 Reagents and conditions: i, PhSH (2 equiv.), Et_3N (2 equiv.), THF, 0 $^{\circ}\mathrm{C}$

2,3-dihydroxy esters can be readily prepared from (E)- α , β -unsaturated esters by Sharpless asymmetric dihydroxylation (AD).⁴

Diethyl L-tartrate was transformed to the cyclic carbonate 1a by reaction with triphosgene.⁵ The cyclic carbonate 1a was treated with 2 equiv. of benzenethiol and triethylamine in THF at 0 °C for 30 min to afford (2S,3S)- α -sulfanyl β -hydroxy diester 2a † in 95% yield (Table 1, entry 1). When the carbonate 1a was treated with lithium iodide in DMF at room temperature for 2 h, a ca. 1:1 mixture of the epimeric α -iodo β -hydroxy ester 2b^{3b} was obtained (entry 2).[‡] Alternatively, reaction of the carbonate 1a with sodium azide in DMF at room temperature for 4 h afforded the azido ester $2c^{6} \left[\alpha\right]_{D}^{25} + 16.4 (c 0.20, CHCl_{3})$ $[\text{lit.}, {}^{6} [\alpha]_{D}^{25} + 17.5 (c \ 1.48, \text{CH}_{2}\text{Cl}_{2})]$ in 88% yield (entry 3). For the carbonate of the monoester 1b, the α -sulfanyl β -hydroxy ester 2d ⁷ $[\alpha]_D^{25} + 138 (c \ 0.95, CHCl_3)$ [lit., ⁷ $[\alpha]_D^{25} - 133 (c \ 1.0,$ CHCl₃) for the enantiomer] was obtained (entry 4). These procedures seem to be mild in comparison with the reactions of LiBr or NaN₃ with cyclic sulfinates under reflux conditions.³ Asymmetric dihydroxylation⁸ of the trans-methyl cinnamate

with the AD-mix- β followed by treatment with triphosgene gave the cyclic carbonate **1c**. Treatment of compound **1c** with benzenethiol (2 equiv.) and triethylamine (2 equiv.) afforded the (2*R*,3*R*)- α -sulfanyl β -hydroxy ester **2e**, where the nucleophile attack had occurred exclusively at position C(2) (entry 5). This is in contrast to the regioselective opening of a cyclic sulfate with sodium azide at C(3), where the phenyl group acts as an activating substituent.^{2*f*,9}

The α -phenylsulfanyl and the α -iodo esters **2a** and **2b** can serve as useful intermediates for the synthesis of unnatural diethyl (*R*)-malate **3a**.^{3b,10} Desulfanylation¹¹ of the α -phenyl-sulfanyl group in the diester **2a** with Raney nickel provided compound **3a**.^{3b,10} [α]_D²⁵ +9.7 (*c* 1.25, EtOH) [lit.,^{3b} + 10.5 (*c* 2.05, EtOH)] in 70% yield. Alternatively, epimeric iodo alcohol **2b** was also readily reduced ¹² to compound **3a** [α]_D²⁵ + 10.1 (*c* 0.12, EtOH) with Zn in EtOH (Scheme 2).

Scheme 2 Reagents and conditions: i, Raney Nickel (10 equiv.), EtOH, room temp., 30 min (70%); ii, Zn (3 equiv.), EtOH, reflux, 1 h (72%)

Optically active β -hydroxy esters are useful chiral synthons in the synthesis of various natural products. They are usually prepared by the enantioselective microbial reduction¹³ of β keto esters, from the biopolymer PHB,¹⁴ or Ru- (*R*)- or (*S*)-BINAP catalysed asymmetric hydrogenation¹⁵ of the corresponding β -keto esters.

The α -sulfanyl β -hydroxy monoesters 2d and 2e can be transformed to the optically active β -hydroxy esters. Reductive cleavage of compounds 2d and 2e with Raney nickel afforded the optically active β -hydroxy esters (*R*)-3b $[\alpha]_D^{25} - 45.4$ (*c* 0.27, CHCl₃) (lit.,¹⁶ $[\alpha]_D - 47$) and (*S*)-3c,¹⁷ $[\alpha]_D^{25} - 17.5$ (*c* 0.46, EtOH) [lit.,^{17a} $[\alpha]_D^{22} - 18.3$ (EtOH)], respectively (Scheme 3).

Scheme 3 Reagents and conditions: i, Raney nickel (10 equiv.), EtOH, room temp., 30 min

[†] **2a**: TLC: SiO₂, EtOAc-hexanes 1:1, $R_f = 0.56$; $[\alpha]_D^{25} - 28.2$ (*c* 2.0, CHCl₃); $\delta_{H}(300 \text{ MHz}, \text{CDCl}_3)$ 1.21 (6 H, m), 3.43 (1 H, d, *J* 6.2), 4.10–4.30 (5 H, m), 4.53 (1 H, m), 7.29 (3 H, m) and 7.50 (2 H, m); $\nu_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 3500 and 1736; m/z 298 (M⁺), 121 (base peak), 109 and 45 (Found: C, 55.9; H, 6.2; S, 10.75. C₁₄H₁₈SO₅ requires: C, 56.36; H, 6.08; S, 10.75%).

[‡] The ratio was determined by 300 MHz ¹H NMR.

Table 1	Regioselectiv	e ring op	ening of	the cyclic	carbonates ((1–2)	
---------	---------------	-----------	----------	------------	--------------	-------	--

			Conditions				
Entry	Substrate	Nucleophiles	Solvent	Temp. (°C)	Time (h)	Product ^a	Yield ^b
1	1a	PhSH-Et ₃ N	THF	0	0.5	2a	95
2	1a	LiI	DMF	25	2	2b	85
3	1a	NaN_3	DMF	25	4	2c	88
4	1b	PhSH-Et ₃ N	THF	0	1	2d	89
5	1c	PhSH-Et ₃ N	THF	0	0.5	2e	91

 $[\alpha]_D^{25}$ Values in CHCl₃. **2a**: -28.2 (c 2.0); **2c**: +16.4 (c 0.20); **2d**: +138 (c 0.95); **2e**: +68.8 (c 0.85). ^b Isolated yield.

To establish the relative stereochemistry of the newly introduced C–S bond in compound 2e, the α -sulfanyl β -hydroxy ester 2e was converted into the cyclic ketal 4 and the stereochemistry was deduced from the coupling constant (*J* 10.7 Hz, *trans* coupling) in the ¹H NMR (200 MHz) spectrum (Scheme 4).

Scheme 4 Reagents and conditions: i, LiAlH₄, THF, reflux; ii, 2,2dimethoxypropane, p-TsOH (67% overall)

In summary, nucleophilic ring opening of the cyclic carbonates of optically active *threo*-2,3-dihydroxy esters afforded α -substituted β -hydroxy esters with high regio- and stereoselectivity, which can be transformed to β -hydroxy esters, useful chiral synthons in organic synthesis.

Experimental

Methyl(2R,3R)-3-Hydroxy-3-phenyl-2-(phenylsulfanyl)propionate 2e.—A solution of the carbonate 1c (160 mg, 0.72 mmol) in anhydrous THF (2 cm³) at 0 °C under N₂ was added benzenethiol (158 mg, 1.44 mmol) and triethylamine (145 mg, 1.44 mmol). The reaction mixture was stirred for 30 min at 0 °C. The solvent was then evaporated and the residue was diluted with water and extracted with diethyl ether (30 cm³). The diethyl ether layer was dried over anhydrous $MgSO_4$ and evaporated under reduced pressure. The crude product was separated by silica gel column chromatography (EtOAchexanes 1:1, $R_f = 0.57$) to afford compound **2e** (188 mg, 91%); $[\alpha]_D^{25}$ + 68.8 (c 0.85, CHCl₃); δ_H (300 MHz, CDCl₃) 3.12 (1 H, d, J 5.5), 3.65 (3 H, s), 3.91 (1 H, d, J 7.8), 5.00 (1 H, dd, J 7.8 and 5.5), 7.20 (5 H, m) and 7.35 (5 H, m); $v_{max}(neat)/cm^{-1}$ 3500 and 1737; m/z 288 (M⁺), 229, 109 and 91 (base peak) (Found: C, 66.5; H, 6.1; S, 10.9. C₁₆H₁₆SO₃ requires: C, 66.64; H, 5.59; S, 11.12%).

Acknowledgements

Generous financial support by KOSEF-OCRC and the Ministry of Education (BSRI-94-3420) is gratefully acknowledged.

References

1 (a) R. O. Duthaler, *Tetrahedron*, 1994, **50**, 1539; (b) R. M. Nanson, *Chem. Rev.*, 1991, **91**, 437.

- 2 (a) Y. Gao and K. B. Sharpless, J. Am. Chem. Soc., 1988, 110, 7538;
 (b) B. M. Kim and K. B. Sharpless, Tetrahedron Lett., 1989, 30, 655;
 (c) B. B. Lohray, Y. Gao and K. B. Sharpless, Tetrahedron Lett., 1989, 30, 2623; (d) R. Oi, K. B. Sharpless, Tetrahedron Lett., 1991, 32, 999; (e) N. Machinaga, C. Kibayashi, Tetrahedron Lett., 1990, 31, 3637; (f) A. M. P. Koskinen, E. K. Karvinen and J. P. Siirila, J. Chem. Soc., Chem. Commun., 1994, 21.
- 3 (a) B. B. Lohray and J. R. Ahuja, J. Chem. Soc., Chem. Commun., 1991,95; (b) Y. Gao and C. M. Zepp, Tetrahedron Lett., 1991, **32**, 3155.
- 4 Catalytic Asymmetric Synthesis, ed. I. Ojima, VCH Publishers, Inc., New York, 1993, pp. 227–272.
- 5 (a) R. M. Burk and M. B. Roof, *Tetrahedron Lett.*, 1993, 34, 395; (b) S.-K. Kang, J.-H. Jeon, K.-S. Nam, C.-H. Park and H.-W. Lee, *Synth. Commun.*, 1994, 24, 305.
- 6 J. Legters, L. Thijs and B. Zwanenburg, Tetrahedron, 1991, 47, 5287.
- 7 The enantiomer of compound **2d** was prepared by baker's yeast reduction of α -sulfanyl β -keto esters: T. Fujisawa, T. Itoh and T. Sato, *Tetrahedron Lett.*, 1984, **25**, 5083.
- 8 K. B. Sharpless, W. Anberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K.-S. Jeong, H.-L. Kwong, K. Morikawa, Z.-M. Wang, D. Xu and X.-L. Zhang, J. Org. Chem., 1992, 57, 2768.
- 9 In the reaction of 2,3-epoxycarboxylic acid methyl ester with sodium azide, two regioisomeric products were obtained; J. Legters, L. Thijs and B. Zwanenburg, *Tetrahedron Lett.*, 1989, **30**, 4881.
- Preparation of D-malates: (a) H. Wynberg and E. G. Staring, J. Am. Chem. Soc., 1982, 104, 166; (b) I. Chibata, Pure Appl. Chem., 1978, 50, 667; (c) S. Hemrot, M. Larchevegue and Y. Petit, Synth. Commun., 1986, 106, 183; (d) E. Hungerbuhler, D. Seebach, D. Wasmuth, Angew. Chem., Int. Ed. Engl., 1979, 18, 958; (e) M. Alpegiani, S. Hanessian, J. Org. Chem., 1987, 52, 278; (f) K. Kusuta, J. Inanaga and M. Yamaguchi, Tetrahedron Lett., 1989, 30, 2945.
- 11 (a) W. A. Bonner and R. A. Grimm, in *The Chemistry of Organic Sulfur Compounds*, eds. N. Kharasch and C. Y. Meyers, vol. 2, Pergamon Press, Oxford, 1966, p. 35; (b) J. T. B. Ferreira, J. A. Marques and J. P. Marino, *Tetrahedron: Asymmetry*, 1994, 5, 641.
- 12 For a review of the reduction of organic halides, see: A. R. Pind, Synthesis, 1980, 425.
- 13 (a) K. Mori, in Studies in Natural Products Chemistry, ed. A.-U. Rahman, vol. 1, Stereoselective Synthesis, Elsevier, 1988, pp. 677–712; (b) K. Mori, in Organic Synthesis: Modern Trends, ed. O. Chizhov, Blackwell, 1987, pp. 293–304; (c) E. Santaniello, P. Ferraboschi, P. Grisenti and A. Manzocchi, Chem. Rev., 1992, 92, 1071; (d) D. Seebach, M. A. Satter, R. H. Weber and M. F. Zuger, Org. Synth., 1984, 63, 1.
- 14 (a) G. Hungerbuhler, D. Seebach and D. Wasmuth, *Helv. Chim. Acta.*, 1981, 64, 1467; (b) D. Seebach, M. F. Zuger, *Helv. Chim. Acta.*, 1982, 65, 495; (c) D. Seebach and M. F. Zuger, *Tetrahedron Lett.*, 1985, 25, 271; (d) T. Sugai, M. Fujita and K. Mori, *Nippon Kagaku Kuishi* (*J. Chem. Soc. Jpn.*), 1983, 1315.
- 15 R. Noyori, T. Ohkuma, M. Kitamura, H. Takaya, N. Sayo, H. Kumobayashi and S. Akutagawa, J. Am. Chem. Soc., 1987, 107, 5856.
- 16 G. Solladie and A. Almario, Tetrahedron Lett., 1992, 33, 2477.
- 17 (a) K. Kishikawa, M. Yamamoto, S. Kohmmoto and K. Yamada, *Chem. Lett.*, 1989, 787; (b) K. Soai, T. Yamanoi, H. Hikima and H. Oyamada, J. Chem. Soc., Chem. Commun., 1985, 138; (c) C. Mioskowski and G. Solladie, *Tetrahedron*, 1980, 36, 227.

Paper 4/06256F Received 13th October 1994 Accepted 14th October 1994